Bienvenidos, estudiantes Terapia Física a un nuevo Cuatrimestre, acá pueden descargar el programa del curso Biología General para la Carrera de Terapia Física de la Universidad Americana de Costa Rica, para el Segundo Cuatrimestre del 2020. Haga click en el enlace correspondiente a continuación para acceder al documento. Bienvenidos!!!
jueves, 21 de mayo de 2020
sábado, 26 de enero de 2019
Citoplasma y Citosol
Sobre este tema hay que hacer algunas consideraciones conceptuales que en los libros de texto ( generalmente traducciones del inglés ) no se especifican sobre el contenido celular. Por eso me permito explicar algunos conceptos para luego relacionarlos
Protoplasma
La definición de este término lo ubica como sinónimo de citoplasma, sin embargo la misma debe ir mas allá, el concepto de citoplasma explicaré que se trata solamente en el caso de eucariotas y por tal las células procariotas no tendrían ni citoplasma ni protoplasma. La definición de protoplasma debe contemplar el contenido total de la estructura celular ( ya sea Procariota o Eucariota ), pero contempla al citoplasma y al carioplasma ( el cual se encuentra solo en las células con núcelo).
En la ilustración se muestra una célula procariota con su protoplasma en verde, en el mismo no se aprecian estructuras como si en la célula eucariota de la derecha
Citosol
El citosol o hialoplasma, es el gel acuoso interior de la célula y que se encuentra fuera de las membranas internas ( cuando las hay ). En muchos casos representa un poco más mitad del volumen celular. Este término Citosol debe ser universal, pues existe tanto en Procariotas como en Eucariotas. El citosol gran cantidad de sustancias orgánicas disueltas, como por ejemplo: azúcares, algunos nucleótidos y ácidos nucleicos, proteínas y enzimas. También contiene una gran variedad de filamentos proteicos que le proporcionan una compleja estructura interna. El conjunto de estos filamentos constituye el citoesqueleto o esqueleto celular.
Entre el 30 y el 50% de las proteínas celulares, sintetizadas por los ribosomas, están destinadas a permanecer en el citosol. Debido a esta gran concentración de proteínas, el citosol es un gel viscoso, organizado por las fibras citoesqueléticas. Se cree que esta estructura ayuda a organizar dirigir y controlar las diversas reacciones enzimáticas.
En este esquema se observan los principales componentes del citoesqueleto ( Filamentos, Microfilamentos y Microtúbulos ) rodeando algunas organelas y disperso por el citosol.
Además, en el citosol de muchas células se almacenan sustancias de reserva o toxinas en forma de gránulos, los cuales se conocen con el nombre denominados inclusiones, éstas inclusiones no están rodeadas por una membrana. Así, las células musculares y los hepatocitos contienen gránulos citosólicos de glucógeno y los adipocitos contienen grandes gotas de grasas, que pueden llegar a ocupar casi todo el citosol.
En la ilustración de la izquierda, se observa un adipocito con una reserva de grasas, las dos fotografías restantes corresponden a hepatocitos con inclusiones formadas por condiciones patológicas, unas coloreadas en rojo y las otras formando algo similar a una vacuola
El paraplasma es el conjunto de inclusiones de una célula, el cual se clasifica en:
Inclusiones en células vegetales:
1.- Inclusiones lipídicas: para utilizar como nutrientes. Abundantes en tejidos de semillas.
2.- Aceites esenciales: mezcla de compuestos terpénicos. Entre los monoterpenos destacan el geraniol, limoneno, mentol, bineno, alconfor. Los cuales dan olores y sabores característicos las plantas que los llevan. Constituyen pequeñas gotas líquidas.
3.- Látex.
4.- Almidón: polisacárido de reserva en células vegetales.
Inclusiones múltiples en una célula vegetal
Inclusiones en células animales:
1.- Glucógeno: polisacárido de reserva en células animales. Se observa como gránulos al microscopio
2.- Lípidos: se acumulan como triglicéridos de ácidos grasos y aparecen como gotas de tamaño variable.
3.- Proteínas: en general aparecen bajo formas cristalizadas. Generalmente están en el citosol propiamente, aunque pueden aparecer en las mitocondrias, RE o núcleo. Presentes en tipos celulares muy variados.
4.- Pigmentos: son sustancias que dan color natural al tejido. Se clasifican en:
Pigmentos endógenos: como por ejemplo la hemoglobina, melanina y lipofugina. Los cromatóforos son células que contienen pigmentos rojos (eritróforos) o amarillos (xantóforos). Están presentes en algunos vertebrados.
Pigmentos exógenos: originados fuera del organismo. Como por ejemplo carotenoides y minerales.
Las flechas muestran inclusiones en el eritrocito humano, las cuales se llaman Cuerpos de Heinz. Estas corresponden a Hemoglobina agregada o desnaturalizada. En pacientes con síndromes talasémicos o de hemoglobinas inestables.
El citosol entonces representa el medio acuoso interno del citoplasma, que llena todos los espacios fuera de las organelas, y en el que se producen muchas funciones citoplasmáticas. No se considera pues parte del citosol el contenido o lumen de los compartimentos separados por membranas. El término fluido intracelular se refiere a todos los fluidos del interior de una célula, tanto del citosol como el fluido del interior de todas las organelas, excluido el núcleo. Por lo tanto, es incorrecto referirse al Citosol como el fluido interior de la célula.
Composición Química
Desde un punto de vista químico, el citosol es principalmente un medio acuoso el cual puede variar entre un 85% a un 95% de agua. En el se encuentran disueltas pequeñas sustancias orgánicas ( alimentos, hormonas, mensajeros ) y también sustancias inorgánicas ( sales minerales principalmente ). Aunque la imagen más utilizada al referirse al citosol es la de partículas flotando libremente en el agua, el citosol tiene una organización muy alta a nivel molecular. El citosol es un fluido de “naturaleza gelatinosa” que tiene un contenido entre un de un 20 y un 5%% de proteínas. En el que están disueltas muchas de las moléculas que la célula necesita para su metabolismo, entre ellas moléculas orgánicas que son intermediarios del metabolismo.
Así, el citosol está repleto de proteínas que dirigen (catalizan) y controlan el metabolismo celular (glicólisis, gluconeogénesis, vía de las pentosas fosfato, activación de aminoácidos, síntesis de ácidos grasos, síntesis de nucleótidos), sistemas de traducción de señales internas (segundos mensajeros, AMPc, GMPc, IP3-inositol trifosfato), con receptores intracelulares de señalización (factores de transcripción, quinasas proteasas ). En el citosol se encuentran los ribosoma libres que realizan la síntesis de proteínas que serán distribuidas y destinadas a diferentes compartimentos celulares.
Ribosomas en el Citosol, los ribosomas se encargan de ensamblar las proteínas celulares
Es el contenido celular, contenido entre el núcleo y la membrana. Está compuesto por el CITOSOL, y por el SISTEMA ENDOMEMBRANOSO el cual forma estructuras conocidas como ORGANELAS, las cuales son pequeños cuerpos que cumplen a manera de órganos con las unciones vitales de la célula.
Las organelas se pueden clasificar de acuerdo a la CANTIDAD DE MEMBRANAS que éstas posean, existiendo organelas de 1, 2 y 3 membranas.
Videos
Citoplasma de la celula
La célula eucariota
Formato trabajos finales UAM
En este documento encontrará algunos aspectos técnicos sobre la elaboración del trabajo escrito deberá desarrollar el estudiante como trabajo final de curso.
viernes, 13 de julio de 2018
El Proceso de la División Celular
Las células EUCARIOTAS pasan a través de una secuencia regular de crecimiento y división llamada CICLO CELULAR. Para completarse este proceso, se puede requerir desde unas pocas horas hasta varios días o incluso semanas, todo depende del tipo de célula y de múltiples factores externos ( como la temperatura o los nutrimentos disponibles por ejemplo).
Por medio de la división celular el MATERIAL GENÉTICO de una célula se reparte entre dos nuevas células hijas. La distribución de los duplicados exactos de la molécula que contiene la información hereditaria es relativamente simple en las células procarióticas, en las cuales, la mayor parte del material genético está en forma de UNA SOLA MOLÉCULA LARGA Y CIRCULAR DE ADN, la cual se conoce como CROMOSOMA BACTERIANO o NUCLEOIDE.
Por medio de la división celular el MATERIAL GENÉTICO de una célula se reparte entre dos nuevas células hijas. La distribución de los duplicados exactos de la molécula que contiene la información hereditaria es relativamente simple en las células procarióticas, en las cuales, la mayor parte del material genético está en forma de UNA SOLA MOLÉCULA LARGA Y CIRCULAR DE ADN, la cual se conoce como CROMOSOMA BACTERIANO o NUCLEOIDE.
En la microfotografía se aprecia el Cromosoma Bacteriano o Nucleoide en una célula bacteriana
Esta molécula de ADN constituye el CROMOSOMA DE LA CÉLULA ( el término se aplica por representar una unidad hereditaria pero no es un cromosoma desde el punto de vista estructural ), y se duplica antes de la división celular.
Microfotografías al microscopio electrónico de transmisión coloreadas digitalmente de diferentes células procariotas en donde se muestra el cromosoma bacteriano durante la división celular
Cada uno de los dos cromosomas hijos se ancla a la membrana celular en polos opuestos de la célula. Cuando la célula se alarga, los cromosomas se separan. Cuando la célula alcanza aproximadamente el doble de su tamaño original y los cromosomas están separados, la membrana celular se invagina y se forma una nueva pared, que separa a las dos células nuevas y a sus duplicados cromosómicos.
En el esquema se representa la secuencia que ocurre en la división celular en procariotas
En las células EUCARIOTAS, el problema de dividir exactamente el material genético es mucho más complejo que en las PROCARIOTAS. Una célula eucariótica típica contiene aproximadamente mil veces más ADN que una célula procariótica; este ADN es LINEAL y forma un CIERTO NÚMERO DE CROMOSOMAS QUE VARIA DE ESPECIE A ESPECIE. Cuando estas células se dividen, cada célula hija tiene que recibir una copia completa, y sólo una, de cada uno del total de cromosomas. Además, las células eucarióticas contienen una variedad de organelas que también deben ser repartidas entre las células hijas.
( Izq ) representación de una célula durante la división celular, ( centro y derecha ) microfotografías de células en las que se pueden observar las estructuras cromosómicas.
Durante el proceso de división celular en los distintos organismos la cromatina se condensa FORMANDO LOS CROMOSOMAS, que poseen los genes quienes son portadores de los caracteres hereditarios, y de este modo se empieza a dar el fenómeno de división celular conocido como CICLO CELULAR.
En los seres EUCARIÓTICOS los cromosomas poseen estructuras de ADN unidas a un tipo de proteínas llamadas HISTONAS ( en el ser humano se conocen cinco tipos ), las cuales se encargan de ENROLLAR la cromatina a niveles altos de condensación llamados SUPERENROLLAMIENTO o HIPERENRROLLAMIENTO.
Esquemas que muestran la disposición de las histonas durante el enrrollamiento de la cromatina, al centro se puede observar el “ collar de perlas “ que forman estas estructuras llamadas nucleosomas.
Conocer la morfología de los cromosomas es importante para poder diagnosticar anomalías que se puedan relacionar con muchas enfermedades genéticas. En general los cromosomas poseen una región llamada CENTRÓMERO, la cual separa los BRAZOS del mismo y une las DOS CROMÁTIDAS que forman el cromosoma ( CROMÁTIDAS HERMANAS ), el centrómero también es la zona por la que el cromosoma se une con las fibras de microfilamentos que forman el huso y es quien realiza y regula los movimientos cromosómicos durante las primeras etapas de la división nuclear. Los extremos distales del cromosoma se llaman TELÓMEROS. Los brazos que se forman a partir del centrómero se llaman BRAZO p ( el que se ubica hacia arriba en el dibujo del cromosoma ) y BRAZO q ( ubicado hacia abajo ).
un dibujo realizado a partir de la microfotografía de un cromosoma muestra las partes principales del mismo
TIPOS DE CROMOSOMAS
El momento más apropiado para estudiar la morfología de los cromosomas es durante la división del núcleo celular en METAFASE, cuando se encuentran duplicados. Los cromosomas se clasifican de acuerdo a la posición que ocupa el CENTRÓMERO con respecto al cuerpo del mismo.
METACÉNTRICO: El CENTRÓMERO se encuentra en el CENTRO del cromosoma. En este caso se forman dos brazos aproximadamente del mismo tamaño es decir p = q
SUBMETACÉNTRICO: Cuando el CENTRÓMERO se halla desplazado hacia UN EXTREMO del cromosoma y se forman dos brazos desiguales. En este caso p es menor que q.
ACROCÉNTRICO: Cuando el CENTRÓMERO se halla desplazado MUY CERCA DEL TELÓMERO, en ocasiones el brazo p tiene una estructura especial llamada “ SATÉLITE “ En este caso p es mucho menor que q.
TELOCÉNTRICO: El CENTRÓMERO está en el EXTREMO del cromosoma lo que forma cromosomas de un solo brazo. No está presente en el ser humano, pero sí en otros mamíferos. p = 0.
Además se conoce la existencia de otros tipos de cromosomas como por ejemplo los CROMOSOMAS PLUMOSOS o en ESCOBILLA, los cuales se encuentran en las reproductivas de anfibios como las salamandras. Además existen los CROMOSOMAS POLITÉNICOS presentes en las glándulas salivales de las larvas de la mosca de la fruta ( Drosophila melanogaster ) .
Microfotografías que muestran cromosoma plumoso ( der ) y un comosoma politénico ( izq )
CICLO CELULAR
El CICLO CELULAR es el grupo de acontecimientos eventos que permiten el CRECIMIENTO de la célula y la DIVISIÓN DEL MATERIAL GENÉTICO Y EL CUERPO CITOPLASMÁTICO EN DOS. Es el período que transcurre entre el comienzo de una división celular y el comienzo de la siguiente. Su duración varía de una célula a otra, sin embargo generalmente dura varias horas. En organismos EUCARIOTAS PLURICELULARES, la duración del ciclo depende del tipo celular. Las células del intestino, la mucosa bucal o epitelio pulmonar tienen ciclos muy cortos, se dividen rápidamente (a veces en sólo seis a ocho horas). El ciclo de la mayor parte de las células animales oscila entre 8 horas y unos 100 días. Hay casos excepcionales, de células muy especializadas, que han perdido la capacidad de reproducción (detienen su ciclo y no se dividen, y se mantienen en estado adulto toda su vida) y su final siempre es la muerte, como los eritrocitos, neuronas o fibras musculares esqueléticas.
Representación esquemática de un ciclo celular en que la misma se lleva a cabo en aproximadamente 24 horas. G1: 12 horas, S: 7 horas, G2: 4 horas, M: 1 hora
El ciclo celular comprende tres fases principales:
- INTERFASE
- FASE M
- CITOCINESIS
La INTERFASE es la etapa del ciclo en la cual la célula se prepara para la división celular, aquí se duplican el material genético y todas las estructuras celulares del citoplasma como la organelas y los orgánulos. La interfase se diferencia en el ciclo celular por la ausencia de estructuras cromosómicas visibles.
Microfotografías de dos células interfásicas; ( izq ) célula vegetal, ( der ) célula animal
La INTERFASE a su vez se divide en tres etapas
( izq ) Esquema que muestra el orden de las etapas de interfase durante el ciclo celular, ( der ) células vegetales en interfase
En un cierto momento de G1, se llega al PUNTO DE NO RETORNO o PUNTO R, en el que la célula deberá decidir si continúa con el ciclo, es decir, si completa el resto del proceso o la misma empiece a funcionar como una célula específica en un tejido. La llegada al punto R está determinada por reguladores enzimáticos, y conducen el proceso a la etapa S. Si no se alcanza dicho punto R el ciclo celular se detiene.
La etapa previa al PUNTO R se la denomina FASE G0 y ocurre en la ETAPA TEMPRANA DE G1, y su duración depende de numerosos factores (nutrientes, temperatura, iluminación ). Así, cuando una célula se diferencia para formar un tejido puede permanecer en G0 mucho tiempo (días o meses) sin llegar al punto R (deteniendo su ciclo) como las neuronas o fibras esqueléticas. Las células que permanecen en G0 toda su vida se llaman quiescentes. Si las células continúan con el proceso de división y se denominan CÉLULAS EMBRIONARIAS. Las células que entran en G0 permanecen VIABLES Y ACTIVAS pero en la mayoría de los casos no se vuelven a dividir.
El estudio de los cromosomas y su importancia
El material genético de la célula eucariota, se encuentra organizado en una estructura compleja compuesta por ADN y proteínas, esta se encuentra localizada en una organela especializada, el núcleo.
Esquema del núcleo celular
El término cromatina proviene de la palabra griega "khroma", que significa coloreado, y "soma", que significa cuerpo. Esta cromatina es la forma en que normalmente se encuentra la molécula de ADN dentro de la célula, y es la forma en que este material genético, presenta actividad biológica. En un núcleo eucariota no hay cromosomas, lo que existe es cromatina. La cromatina es una estructura dinámica que adapta su estado de compactación y empaquetamiento para optimizar los procesos de replicación, transcripción y reparación del ADN.
Es durante el proceso de división celular en los distintos organismos que la cromatina se condensa formando los cromosomas, estas estructuras poseen los caracteres hereditarios, y cuando se forman estas estructuras se empieza a dar el fenómeno de división celular conocido como Ciclo Celular. Para este momento el núcleo como estructura membranosa, ha desaparecido, por lo cual: “ cuando hay cromosomas no hay núcleo y cuando hay núcleo no hay cromosomas “
en la fotografía se observa una célula con núcleo y luego una célula con cromosomas
En los eucariotas los cromosomas se forman gracias a la acción de 5 tipos de proteínas llamadas histonas y también a otros tipo de proteínas llamadas “ proteínas no histónicas “, las cuales se encargan de enrollar la cromatina a niveles altos de condensación llamado hiperenrollamiento o superenrrollamiento.
del ADN al Cromosoma, proceso de empaquetamiento de la cromamtina
Los cromosomas fueron observados en células de plantas por el botánico suizo Karl Wilhelm von Nägeli en 1842 e, independientemente, por el científico belga Edouard Van Beneden en lombrices del género Ascaris.
El uso de drogas basofílicas como técnica citológica para observar el material nuclear fue fundamental para los descubrimientos posteriores. Así, el citólogo alemán Walther Flemming en 1882 definió inicialmente la cromatina como "la sustancia que constituye los núcleos interfásicos y que muestra determinadas propiedades de tinción". Por tanto, las definiciones iniciales de cromosoma y cromatina son puramente citológicas.
Walther Flemming
La definición biológica sólo se alcanzó a principios del siglo XX, con el descubrimiento de las Leyes de Mendel: tanto la cromatina como el cromosoma constituyen el material genético organizado. Para ello, fueron fundamentales los trabajos del holandés Hugo de Vries (1848-1935), del alemán Carl Correns (1894-1933) y del austríaco Erich von Tschermak-Seysenegg (1871-1962), cuyos grupos de investigación redescubrieron independientemente las leyes de Mendel y asociaron los factores genéticos o genes a los cromosomas.
De Vries, Correns y von Tschermak-Seysenegg
Pero los primeros datos experimentales que permitieron a Walter Sutton y Theodor Boveri proponer que los "factores" de Mendel eran unidades físicas que se localizan en los cromosomas datan de 1902, esto se conoce como la “ teoría cromosómica de la herencia”.
Boviery &; Sutton
Estas ideas permanecieron controvertidas hasta que Thomas Hunt Morgan realizó los experimentos que hoy se consideran clásicos sobre los rasgos genéticos ligados al sexo, publicados en 1910, lo que le valió el Premio Nobel en 1933.
Tomas H Morgan
Morfología de los Cromosomas
Cada cromosoma estará formado por dos cromátidas, que resultan de la condensación del ADN que se encuentra duplicado cuando la célula se va a dividir. Los cromosomas poseen una región llamada centrómero el cual separa los brazos del mismo, los extremos del cromosoma se llaman telómeros. Los brazos del cromosoma se llaman brazo p y brazo q.
Tipos de Cromosomas
El momento más apropiado para estudiar la morfología de los cromosomas es durante la división del núcleo celular en metafase, cuando se encuentran duplicados. Los cromosomas se clasifican de acuerdo a la posición que ocupa el centrómero con respecto al cuerpo del mismo.
Metacéntrico: El centrómero se encuentra aproximadamente hacia el centro del cromosoma. En este caso se forman dos brazos aproximadamente del mismo tamaño es decir p = q
Submetacéntrico: Cuando el centrómero se halla desplazado hacia uno de los extremos del cromosoma y se forman dos brazos desiguales. En este caso p > q los brazos cortos siempre se ubican hacia la parte superior del cromosoma.
Acrocéntrico: Cuando el centrómero se halla desplazado muy cerca del telómero, el brazo corto tiene una estructura especial conocida como “ satélite “ En este caso p << q
Telocéntrico: El centrómero está en el extremo del cromosoma lo que forma cromosomas de un solo brazo. No está presente en el ser humano, pero sí en otros mamíferos. P = 0
Además se conoce la existencia de otros tipos de cromosomas como por ejemplo los cromosomas plumosos o de escobilla, los cuales se encuentran en las reproductivas de anfibios como las salamandras.
Además existen los cromosomas politénicos presentes en las glándulas salivales de las larvas de la mosca de la fruta ( Drosophila melanogaster ).
Cromosomas politénicos
Métodos para identificar los cromosomas
Actualmente es posible identificar cada cromosoma utilizando técnicas de tinción de alta resolución las cuales incluyen:
Bandas G: Los cromosomas se tratan con tripsina para desnaturalizar las proteínas cromosómicas y luego se tiñen con el reactivo Giemsa. Cada par de cromosomas se tiñe con un patrón característico de bandas claras y oscuras.
Idiograma de un individuo humano normal, cariotipo 44+XY
Bandas Q: Los cromosomas se tiñen con quinacrina y se examinan por microscopía de fluorescencia. Los cromosomas se tiñen en patrones específicos de bandas brillantes y opacas. Las bandas brillantes corresponden casi exactamente a las bandas G oscuras.
microfotografia de los cromosomas de un individuo humano normal, cariotipo 44+XY
Bandas R: Los cromosomas se calientan antes de colorearlos con Giemsa, también se producen bandas claras y oscuras.
microfotografia de los cromosomas de un individuo humano normal, cariotipo 44+XX
Bandas C: Se tiñe específicamente la región centromérica y otras regiones que contienen Heterocromatina.
microfotografia de los cromosomas de un individuo humano normal, cariotipo 44+XX
Naranja de acridina: El naranja de acridina, es un Fluorocromo que ha sido empleado como colorante vital, que da una fluorescencia verde si el microorganismo está vivo y roja si está muerto. De todos modos, como el colorante se intercala en el ADN y el ARN. Se utiliza frecuentemente en microscopía de epifluorescencia.
Idiograma de Mesocricetus aratus( Hámster sirio )
Cariotipos espectrales
El análisis espectral de los cariotipos (o SKY) se trata de una tecnología de citogenética molecular que permite el estudio y visualización de los cromosomas en forma simultánea. Para ello se utilizan sondas fluorescentes individuales y específicas para cada cromosoma. Luego del marcaje mediante un método de etiquetado combinatorio se generan colores diferentes. La diferencias espectrales generadas por el etiquetado combinatorio son capturadas y analizadas usando un interferómetro agregado a un microscopio de fluorescencia. El programa de procesamiento de imágenes entonces asigna un pseudocolor a cada combinación espectralmente diferente, permitiendo la visualización de cromosomas coloreados. Esta técnica es usada para identificar aberraciones estructurales cromosómicas en células cancerígenas y otras patologías cuando el bandeo con Giemsa u otras técnicas no son lo suficientemente precisas.
Estás técnicas han permitido la creación de los ideogramas (mapas cromosómicos).
Idiograma del búfalo ( Bubalus carabanesis )
Un idiograma es una representación gráfica de un cromosoma utilizando técnicas de tinción, en este tipo de mapa se debe mostrar la relación existente entre el brazo corto y el largo, posición del centrómero; y el tipo de cromosoma ( en el caso de los acrocéntricos también se ilustran los tallos y los satélites )
Idiograma en Bandas G de Haemulon aurolineatum
Cariotipos
El cariotipo es un esquema, foto o dibujo de los cromosomas de una célula en metafase que están ordenados de acuerdo a su morfología. También se llama así a la prueba que se realiza para identificar anomalías cromosómicas como causa de malformaciones o de alguna enfermedad. Por medio de esta prueba se puede:
Idiograma de un individuo humano triploide ( 3n )
• Detectar cambios cromosómicos estructurales
Translocación (8;12)(q13;p13)
Los resultados pueden indicar cambios genéticos asociados con una enfermedad.
Trisomia 21 por translocación 21-15
La dotación cromosómica normal de la especie humana es de 44 + XX para las mujeres y de 44 + XY para los varones.
Microfotografía de los cromosomas humanos 44+XY
En el cariotipo humano los cromosomas se ordenan de mayor a menor. Hay cromosomas grandes, medianos y pequeños. Al ordenar los comosomas se constituyen 7 grupos atendiendo no sólo al tamaño sino también a la forma de las parejas cromosómicas, dentro del cariotipo humano podemos encontrar cromosomas metacéntricos (tienen los dos brazos aproximadamente iguales en longitud), submetacéntricos (con un brazo más pequeño que otro) y acrocéntricos (con un brazo corto muy pequeño).
Idiograma de los cromosomas humanos 44+XY
Dentro de cada grupo se van a ordenar y reconocer los cromosomas con la ayuda de un idiograma. El idiograma es la representación esquemática del tamaño, forma y patrón de bandas de todo el complemento cromosómico, los cromosomas se sitúan alineados por el centrómero, y con el brazo largo siempre hacia abajo.
Los grupos que comprende el cariotipo humano son los siguientes:
Cromosomas grandes
Grupo A, (cromosomas 1, 2 y 3), 1 y 3 metacénntricos y 2 submetacéntrico.
Grupo B, (cromosomas 4 y 5), submetacéntricos
Cromosomas medianos
Grupo C, (cromosomas 6, 7, 8, 9, 10, 11, 12 y además los cromosomas X ), todos submetacéntricos
Grupo D, (cromosomas 13, 14 y 15) acrocéntricos
Cromosomas pequeños
Grupo E, (cromosomas 16, 17 y 18) submetacéntricos
Grupo F, (cromosomas 19 y 20) metacéntricos
Grupo G, (cromosomas 21 y 22) acrocéntricos
esquema de bandas G en los cromosomas humanos según la clasificación de Denver
Por acuerdo los cromosomas sexuales X e Y se separan de sus grupos correspondientes y se ponen juntos aparte al final del cariotipo.
De acuerdo a la Clasificación de Denver (todos los cromosomas autosómicos están ordenados en orden decreciente de tamaño, excepto el cromosoma 21 que ahora se sabe que es más pequeño que el 22). Sin embargo, atendiendo solamente a estos parámetros no es posible identificar inequívocamente cada par de cromosomas. Para ello es necesario utilizar diferentes técnicas de bandeo cromosómico que se explicaron anteriormente
Forma en que se realiza el examen:
El examen se puede realizar en una muestra de sangre, de médula ósea, de líquido amniótico o de tejido placentario. La muestra se deja crecer en un cultivo de tejido en el laboratorio y luego las células se seleccionan, los cromosomas se tiñen y se observan bajo el microscopio. Las células se fotografían para obtener un cariotipo que muestre la disposición de los cromosomas. Ciertas anomalías se pueden detectar a través de la cantidad o disposición de los cromosomas.
Preparación para el examen:
Para el examen de sangre no se necesita una preparación especial. Para examinar el líquido amniótico se realiza una amniocentesis. El examen del tejido placentario se hace después de una muestra de vello coriónico o después de un aborto espontáneo, y para examinar una muestra de médula ósea se requiere de una biopsia de médula ósea. La preparación que se puede brindar para este examen depende de la edad, intereses, experiencias previas y grado de confianza del niño.
Diagrama de una Amniocentesis
Razones por las que se realiza el examen:
El examen de sangre generalmente se realiza para evaluar a una pareja con antecedentes de abortos o para evaluar una apariencia anormal del cuerpo que sugiere una anomalía genética. El examen de médula ósea, o el examen de sangre se pueden utilizar para identificar el cromosoma Filadelfia que está presente en el 85% de las personas que sufren de leucemia mielógena crónica (LMC).
Esquema de la translocación (9:22) que da origen al cromosoma Phl (Filadelfia) en la leucemia mieloide crónica y rearreglo de ciertos genes
Actualmente se ha llegado a profundizar bastante en el conocimiento del cariotipo humano y se sabe que es relativamente frecuente la aparición de anomalías cromosómicas. Por ejemplo, cerca de un 25% de los abortos ocurridos antes de la octava semana de gestación tienen cariotipos anormales y un 0,5% de los recién nacidos presentan aneuploidías.
Estas alteraciones no sólo pueden producir anomalías en el propio individuo portador sino que, por tratarse de anomalías genéticas, pueden transmitirse a la descendencia en el caso de que afecten a las células germinales. La detección anticipada de anomalías cromosómicas permite dictaminar las posibilidades de que la descendencia de una pareja portadora de una de ellas pueda presentarla o no. Para ello es preciso conocer el cariotipo de cada progenitor, lo que permite emitir un diagnóstico de su posible descendencia, con lo que el individuo será consciente de sus posibilidades.
El estudio del cariotipo tiene también su aplicación en el diagnóstico prenatal. Es posible determinar la constitución cromosómica del feto antes de su nacimiento pudiendo así observarse si presenta alguna anomalía cromosómica detectable. Hoy en día, el diagnóstico prenatal se practica a posteriori del inicio de la gestación y los resultados positivos suelen plantear conflictos éticos y emocionales. Si bien, en muchos casos este tipo de diagnóstico es el único posible, como cuando la anomalía cromosómica se produce en las células germinales de uno de los progenitores.
Para leer más
NÚCLEO INTERFÁSICO
http://www.iesbanaderos.org/html/departamentos/bio-geo/Apuntes/Bio/T%207%20La%20celula%20y%20el%20nucleo/6%20Nucleo%20interfasico.htm
El Núcleo Celular
http://ingsw.ccbas.uaa.mx/repo/galeria/La%20Celula/nucleo_celular.html
Cariotipo
http://es.wikipedia.org/wiki/Cariotipo
Enfermedades Cromosómicas - Indicaciones de Cariotipo
http://atlasgeneticsoncology.org/Educ/IndicCaryo30043SS.html
LOS CROMOSOMAS MITÓTICOS
http://web.educastur.princast.es/proyectos/biogeo_ov/2bch/B4_INFORMACION/T407_CROMOSOMAS/informacion.htm
Cromosoma
http://www.ferato.com/wiki/index.php/Cromosoma
Videos
Cromosomas y el ADN
Empaquetamiento del ADN en cromatina, nucleosomas. Anotaciones en castellano
Laboratorio: Organización Cariotipo por Mónica Restrepo
Laboratorio: Organización Cariotipo
CULTIVO DE SANGRE PERIFÉRICA Y EXTENDIDO CROMOSÓMICO
diferencias entre cromosomas
Empaquetamiento del ADN en cromatina, nucleosomas. Anotaciones en castellano
Laboratorio: Organización Cariotipo por Mónica Restrepo
Laboratorio: Organización Cariotipo
CULTIVO DE SANGRE PERIFÉRICA Y EXTENDIDO CROMOSÓMICO
diferencias entre cromosomas
Suscribirse a:
Entradas (Atom)