martes, 9 de mayo de 2017

Programa Curso Biología General ( Terapia Fisica )

Bienvenidos, estudiantes Terapia Fisica a un nuevo Cuatrimestre, acá pueden descargar el programa del curso Biología General para la Carrera de Terapia Física de la Universidad Americana de Costa Rica, para el Segundo Cuatrimestre del 2017.  Haga click en el enlace correspondiente a continuación para acceder al documento.  Bienvenidos!!!




viernes, 21 de abril de 2017

quiz Genetica

ya se puede descargar el quiz para el próximo Jueves 27 de Abril, debe hacerse en el documento disponible para descarga una vez que se haya imprimido, no se aceptan trabajos en otro tipo de hoja.



Siamés vs Burmese

domingo, 9 de abril de 2017

Practicas de genetica

a continuación para descarga una serie de problemas para practicar cruces y pedigrís


haga click sobre el nombre del documento que desea descargar









domingo, 5 de febrero de 2017

Videos Apoyo Membrana Celular

Videos que complementan el tema de estructura de la membrana plasmática










Estructura y Composición de la Membrana Plasmática




Para llevar a cabo las reacciones químicas necesarias en el mantenimiento de la vida, la célula necesita mantener un medio interno apropiado y que sea básicamente diferente del exterior. Esto es posible porque las células se encuentran separadas del mundo exterior por una estructura limitante, la membrana plasmática. La membrana plasmática es una estructura  que funciona como una cubierta celular.


Su principal función consiste en  que por medio de ella se puede regular el contenido de la célula. Puede hacer esto porque tanto los alimentos, los nutrientes, así como los desechos que la misma produce deben atravesar la membrana. La membrana, permite el paso de ciertas sustancias hacia la la célula pero impide el paso de otras.  Adicionalmente, las células eucariotas tienen membranas internas ( además de la membrana plasmática ) que forman y delimitan compartimentos.  Estos compartimentos  permiten que se llevan a cabo las actividades bioquímicas de la célula. Las restantes membranas también constituyen barreras selectivas para el pasaje de sustancias.  Estas estructuras membranosas reciben el nombre de Organelas.  Solamente las células eucariotas poseen organelas.

Para REGULAR el paso de sustancias la membrana se basa principalmente en su estructura química así como como la solubilidad de las partículas que la atraviesan en lípidos, la carga eléctrica de la partícula, principalmente.


Charles Ernest Overton, en 1895, descubrió que las sustancias liposolubles penetraban en las células más fácilmente que las que no lo eran. Además que la membrana presentaba gran resistencia al paso de la corriente eléctrica. Estos descubrimientos llevaron a que dedujera la existencia de una membrana formada por lípidos.   

Charles Ernest Overton (1865–1933)

En 1897, Irving Langmuir ( premio noble de química 1932 ) estudio el comportamiento de los fosfolípidos en agua y observó que los grupos polares se disponen perpendicularmente a ella.


Irving Langmuir ( 1881 – 1957 )

En el 1925, E. Gorter y F. Grendel extrajeron  los lípidos de la membrana del eritrocito, y al extenderlos sobre agua notaron que estos ocupaban una superficie dos veces mayor a la superficie del eritrocito, deduciendo de esta forma que la membrana estaba formada por una bicapa lipídica.




Kenneth Stewart Cole, en 1932, estudio la tensión superficial de las membranas de óvulos de erizo de mar y notó que era más pequeña que la tensión superficial teórica de la capa lipídica. En realidad es mayor pero se confundieron al hacer los cálculos, aunque su interpretación fue correcta concluyeron que la membrana plasmática tenía que estar formada por otros componentes además de los lípidos.

Kenneth Stewart Cole ( 1900 – 1984)

Para el año 1935,  Hugh Davson (1909 – 1996)  y James Frederic Danielli (1911 - 1984) , propusieron una estructura de la membrana en forma de emparedado en la que los fosfolípidos estarían en el centro formando una bicapa y estarían rodeados por proteínas y para que había habido intercambio propusieron poros en la membrana plasmática. Años después ( en 1959 ) Jammes David Robertson, formuló el concepto de unidad de membrana, que sugiere que todas las membranas son iguales, tanto las plasmáticas como las internas. Sin embargo hay componentes singulares en las diferentes membranas.


Jammes David Robertson ( 1923 - 1995)

Seymour Jonathan Singer & Garth Nicolson,  en 1972 propusieron el modelo de mosaico fluido de membrana, en  este modelo las proteínas, lípidos e hidratos de carbono se sitúan en una configuración estable. Los lípidos forman la bicapa lipídica y las proteínas adoptan una configuración en la membrana según la interacción de sus partes con las moléculas que las rodea.


Nicholson & Singer

Composición Química de la Membrana

La membrana plasmática se encuentra constituida principalmente por dos capas de Fosfolípidos, moléculas de Colesterol y diversos tipos de proteínas ( tanto proteínas simples como proteínas conjugadas )

Cuando se observa la membrana plasmática a través de micrografías, es posible observar una estructura densa – clara - densa. Básicamente, todas las células existentes parecen mostrar esta estructura de tres capas.




Propiedades de los componentes de membrana

Los fosfilópidos se disponen en una bicapa, la separación de la bicapa produce una capa externa capa E y una capa interna capa P, en principio ambas capas están formadas por los mismos tipos de fosfolípidos sin embargo la abundancia de los mismos varía según la capa


Los fosolípidos son moléculas que poseen la cualidad de poseer dos regiones distintas respecto a sus propiedades, la cabeza del fosfolípido es de naturaleza Hidrófila ( afin al agua ) y se encuentra formada por una molécula de glicerol, un grupo fosfato y una sustancia nitrogenada.  Esta estructura es de naturaleza polar  por lo que resulta soluble en agua.  

La otra región del fosfolípido se encuentra formada por dos cadenas de ácidos grasos y se representan como las “ patas “ de los fosfolípidos, esta región es más de naturaleza lipídica por lo que resulta insoluble en agua.  Por tanto los fosfolípidos presentan la capacidad de tener dos regiuones distintas en cuanto a su solubilidad.  Característica que les permite al disponerse en una bicapa, representar una barrera química para el agua ( y las sustancias solubles en ella ).


El colesterol

El nombre de «colesterol» procede del griego kole (bilis) y stereos (sólido), por haberse identificado por primera vez en los cálculos de la vesícula biliar por Chevreul quien le dio el nombre de «colesterina», término que solamente se conservó en el alemán (Cholesterin).   Es un lípido esteroide, constituida por cuatro anillos de carbono denominados A, B, C y D.  En la molécula de colesterol se puede distinguir una cabeza polar constituida por el grupo hidroxilo y una cola o porción no polar formada por los anillos y los sustituyentes alifáticos unidos a estos.


En las membranas las moléculas de colesterol se encuentran intercaladas entre los fosfolípidos, y su función principal es la de regular la fluidez de la bicapa inmovilizando las colas hidrofóbicas próximas a la regiones polares.


Proteínas de membrana

Las proteínas que se pueden encontrar en la membrana son principalmente de dos tipos:

1. Proteínas integrales: son aquellas que cruzan la membrana y aparecen a ambos lados de la bicapa. La mayor parte de estas proteínas son glicoproteinas ( unidas a carbohidratos ), en donde este carbohidrato de la molécula está siempre de cada al exterior de la célula

2. Proteínas periféricas: están no se extienden a lo ancho de la bicapa sino que están unidas a las superficies interna o externa de la misma y se separan fácilmente de la misma



La naturaleza de las proteínas de membrana determina su función:

Canales: proteínas integrales (generalmente glicoproteínas) que actúan como poros por los que determinadas sustancias pueden entrar o salir de la célula

Transportadoras: son proteínas que cambian de forma para dar paso a determinados productos (

Receptores: Son proteínas integrales que reconocen determinadas moléculas a las que se unen o fijan. Estas proteínas pueden identificar una hormona, un neurotransmisor o un nutriente que sea importante para la función celular. La molécula que se une al receptor se llama ligando.

Enzimas: pueden ser integrales o periféricas y sirven para catalizar reacciones a en la superficie de la membrana

Anclajes del citolesqueleto: son proteínas periféricas que se encuentran en la parte del citosol de la membrana y que sirven para fijar los filamentos del citoesqueleto.

Marcadores de la identidad de la célula: son glicoproteínas y glicolípidos características de cada individuo y que permiten identificar las células provenientes de otro organismo. Por ejemplo, las células sanguíneas tienen unos marcadores ABO que hacen que en una transfusión sólo sean compatibles sangres del mismo tipo. Al estar hacia el exterior las cadenas de carbohidratos de glicoproteínas y glicolípidos forma una especie de cubierta denominada glicocalix

Videos

MEMBRANA PLASMATICA



Membrana Celular ( en inglés )



Fluid Mosaic Model


Para Leer Más

Membrana Plasmática
http://fisicoquimexp.blogspot.com/2009/07/membrana-plasmatica.html

Biología 1M
http://biol1medio.blogspot.com/

martes, 24 de enero de 2017

La Célula Procariota

El nombre “procariota” viene del griego: (pro = antes de y karion = núcleo).  En su mayoría constituyen el grupo que comúnmente se conoce como “bacterias”.   
El término coincide con el reino Monera de las clasificaciones de Copeland o Whittaker que, aunque obsoletas, son aún muy populares.




Las procariotas son células muy pequeñas y de estructura sencilla. Carecen de estructuras formadas por membranas internas ( organelas ), cuando existen compartimientos internos están formados por invaginaciones de la membrana plasmática ( mesosomas ) que actúan en los procesos metabólicos de la célula, como la síntesis de ATP y de pigmentos fotosintéticos en procariotas autótrofos. Se supone que también intervienen en la separación del nucleoide en el momento de la división celular.  



En los procariotas el material genético está diseminado en el citosol o hialoplasma, en el cual se encuentran varios orgánulos como ribosomas y las fibras proteicas que conforman el citoesqueleto


Como ejemplos de procariotas se pueden encontrar las arqueobacterias ( Archaea ), las bacterias  verdaderas ( Eubacteria )y las algas verde azuladas ( Cianopycophyta ) llamadas cianobacterias. Estas últimas son fotosintéticas, ya que transforman la energía lumínica en energía química, almacenada en carbohidratos. Pueden vivir sobre las rocas, los suelos húmedos y las aguas dulces o saladas. Se supone que las cianobacterias fueron las que formaron el oxígeno que se liberó en la primitiva atmósfera terrestre. Las cianobacterias contienen pigmentos de color verde, la clorofila, de color rojo, la ficoeritrina y azul, la ficocianina.





Nostoc una cianofícea


Las Arquibacterias son organismos que pueden sobrevivir en ambientes que normalmente no  toleran otras formas de vida,  por ejemplo en las extensiones heladas de la Antártida, en las oscuras profundidades  del océano y en las aguas casi hirvientes de las fuentes termales naturales, pueden  sobrevivir sin oxígeno libre, obteniendo su energía por procesos anaerobios y si las  condiciones le son desfavorables, pueden formar esporas de paredes gruesas (formas  resistentes inactivas), pudiendo permanecer latentes durante varios años.



Las Arqueobacterias, son bioquímicamente muy distintos del  resto de las bacterias. La principal diferencia radica en la ausencia de peptidoglucano  en su pared, también se diferencian en la secuencia de nucleótidos de ARN de  transferencia, sus ARN ribosómicos y en enzimas específicas. Las diferencias  bioquímicas y metabólicas entre las arqueobacterias y otras bacterias sugieren que  estos grupos pueden haberse separado entre sí hace mucho tiempo en una fase  relativamente temprana de la historia de la vida. Muchos de los ambientes extremos a  los que están adaptadas las arqueobacterias modernas semejan las condiciones que  eran comunes en la Tierra primitiva, pero que ahora son más bien raras. 

Las arqueobacterias incluyen tres grupos:


1- Halófilas. Las halobacterias sólo pueden vivir en condiciones de salinidad  extrema, como estanques salinos. Algunas pueden realizar fotosíntesis, capturando la  energía solar en un pigmento llamado bacteriorrodopsina.

2- Metanógenas. Son anaerobias, producen gas metano a partir de dióxido de  carbono e hidrógeno. Habitan en aguas de drenajes y pantanos y son comunes en el  tracto digestivo del hombre y de otros animales, son las arqueobacterias más  conocidas.

3- Termoacidófilas. Crecen en condiciones ácidas y de temperaturas elevadas.  Algunas se encuentran en manantiales azufrosos.





Las bacterias verdaderas


Las bacterias se pueden dividir en dos grupos sobre las bases de su tinción de Gram. Las bacterias gram positivas se quedan teñidas con cristal violeta después de lavar y las gram negativas no. Todas las bacterias tienen una membrana celular donde ocurre la fosforilación oxidativa (ya que no tienen mitocondrias).


Al exterior de la membrana celular, está la pared celular, la cual es  rígida y protege a la célula de la lisis celular. En las bacterias gram positivas, la capa de peptidoglicano de su pared celular es una capa mucho más gruesa que en las  bacterias gram negativas.




Organización Celular de los procariotas



El material genético de las células procariotas se encuentra libremente dentro del citoplasma, el cual se enrolla hasta formar el único cromosoma ( sin ser un cromosoma verdadero ), esta estructura se ubica en una zona del citoplasma llamada “nucleoide”.    
Las bacterias pueden contener además del cromosoma, moléculas de DNA doble pequeñas y circulares,  denominadas plásmidos. Esas moléculas son elementos genéticos extracromosómicos, no esenciales para la  supervivencia bacteriana, y poseen mecanismos de replicación independientes del ADN cromosómico. La  ventaja de poseer un plásmido es que puede contener genes de resistencia a los antibióticos, tolerancia a los  metales tóxicos, síntesis de enzimas, etc.




Esta aparente simplicidad estructural no significa que las procariotas sean células inferiores a las células eucariotas: aún siendo evolutivamente mucho más antiguas y simples, han conseguido dominar la Tierra y sobrevivir durante miles de millones de años.

Reproducción


Las procariotas se reproducen en forma asexual por fisión binaria (del latín fissus = partir, y binarius = de dos en dos), donde el único cromosoma (ADN) se duplica  cerca de la membrana plasmática adherido a un punto de unión. Luego se separan y se dirigen a distintos lugares de la membrana plasmática. Más tarde se forma un tabique transversal en la parte media de la célula que se invagina y divide el citoplasma hasta formarse dos células hijas, idénticas a la célula de origen. En bacterias que forman cocos múltiples, las células permanecen sin separarse formando largas cadenas o racimos. 
Una vez que se produce la  replicación del ADN, se forma la pared transversa por  crecimiento de la membrana y de la pared celular. Cuando se  multiplican los procariotas, se producen clones de células  genéticamente idénticas. Sin embargo, suelen ocurrir mutaciones y estas, combinadas  con el rápido tiempo de generación de los procariotas, son responsables de su  extraordinaria adaptabilidad.


Otro mecanismo de reproducción es las Conjugación, la cual es un mecanismo parasexual de intercambio genético de gran número de organismos unicelulares que consiste en la fusión temporal de los gametos, de forma que se pueda transferir material genético del individuo donante (considerado como masculino) al receptor (considerado como femenino) que lo incorpora a su dotación genética mediante recombinación y lo transmite a su vez al reproducirse.





Para leer más

Nociones básicas de Citología: La célula Procariota

LA CÉLULA PROCARIÓTICA: ASPECTOS GENERALES

Procariotas

Videos

CÉLULA PROCARIOTA





Documental de procariontes

Célula Procaroita

Videos de Apoyo

Estos videos complementan el material de Clase de la primera y segunda semana de Biología General.

Tipos de Célula


  CÉLULAS PROCARIOTAS Y EUCARIOTAS



Material de Apoyo La Célula

Algunas lecturas, enlaces y videos que complementan el tema de Introducción al estudio de la Célula.

Concepto de Célula



DESARROLLO HISTÓRICO DEL CONCEPTO DE CÉLULA

El concepto de célula



¿Cómo se llegó a formular la Teoría Celular?

Teorías esenciales de la Biología

Elementos dinámicos de la teoría celular
José Luis González Recio.  Universidad Complutense
Ensayo PDF


La Teoría Celular

Procariotas y Eucariotas

TIPOS CELULARES: PROCARIONTES Y EUCARIONTES

Células Procariotas y Células Eucariotas

Procariotas y Eucariotas